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Abstract
Purpose of Review The goal of this review is to evaluate the current status of multi-robot systems in the context of search and
rescue. This includes an investigation of their current use in the field, what major technical challenge areas currently preclude
more widespread use, and which key topics will drive future development and adoption.
Recent Findings Work blending machine learning with classical control techniques is driving progress in perception-driven
autonomy, decentralized multi-robot coordination, and human–robot interaction, among others. Ad hoc mesh networking has
achieved reliability suitable for safety-critical applications and may be a partial solution for communication. New modular and
multimodal platforms may overcome mobility limitations without significantly increasing cost.
Summary Multi-agent systems are not currently ready for deployment in search and rescue applications; however, progress is
being made in a number of critical domains. As the field matures, research should focus on realistic evaluations of constituent
technologies, and on confronting the challenges of simulation-to-reality transfer, algorithmic bias in autonomous agents that rely
on machine learning, and novelty-versus-reliability incentive mismatch

Keywords Urban search and rescue robots . Disaster robotics . Multi-robot search and rescue . Swarm search and rescue .

Multi-agent systems; Field robotics

Introduction

Over one and a half million people lost their lives between
2000 and 2014 from natural disasters, like wildfires and earth-
quakes, and man-made disasters, like nuclear meltdowns and
other industrial accidents [1, 2]. With the world bracing for
increased rates of catastrophic events like hurricanes and in-
creasing global population density leading to higher potential
fatalities [2], there is a pressing need for technology that can
help with disaster recovery. Robots are envisioned as useful
tools for almost every type of disaster. In the future, they may
serve as proxies for humans that can venture to unsafe areas,
supplements to enhance human sensory and manipulation

abilities, or explorers in terrain that human responders cannot
navigate. Following decades of advances in robotic platform
development, robots have been deployed in disaster response
since as early as 2001 [3••]. Individual robots, however, still
face a number of challenges in the field that could be over-
come by using them as part of a multi-robot system.

A multi-robot system consists of multiple simultaneously
operating robotic agents which cooperate in some way in or-
der to accomplish tasks. Figure 1 shows three examples of
multi-robot systems developed for recent search and rescue
competitions. A number of factors make these systems partic-
ularly attractive in the context of search and rescue. For ex-
ample, disasters can encompass extremely large areas that are
impossible for a single robot to effectively explore, redundan-
cy can ensure robustness to individual robot failure, and tasks
that would be too complicated for any one platform can be
decomposed into subtasks performed by many. Beyond
searching for victims in need of aid, response tasks like map
generation and network infrastructure installation also benefit
from having many robots working simultaneously.
Parallelization-based approaches for first responders, like
grid-based search and human chains, are already practiced;
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using robots removes the need to wait for the recruitment of
large numbers of volunteers.

Although academic work on multi-robot systems has
progressed dramatically in recent years (Fig. 2), there is still
a gap between current capabilities and those required for di-
saster response. Published field report data show that in the
period from 2001 to present, there were at least 40 document-
ed cases of robot-assisted disaster response efforts [3••, 4–8].
Of these documented cases, only four of them involved three
or more robots deployed at once, and only two of those (both
marine robots) involved a degree of autonomous operation. In
no cases were robots explicitly cooperating to perform their
tasks. While the promise of multi-robot systems in search and
rescue is clear, there are still key challenges that must be
overcome in order to close the gap between academic interest
and their use in the field.

Note that although terminology differs in the literature, for
the purposes of this review disaster robotics, search and rescue
(SAR) robotics, and urban search and rescue (USAR) robotics
are used interchangeably. Furthermore, this review is written
generally in an attempt to provide information applicable to all
forms of disaster response. The associated technical challenges
can be narrowed dramatically depending on the exact response
context; for example, in recovery from the Fukushima melt-
down, communication infrastructure was existent and there
was not significant time pressure related to victim localization,
but platforms had to be specially designed to withstand the
radiological environment. Erdelj et al. [9•] provide an example
of how different disaster types drive different design constraints
in the specific case of aerial robot fleets.

Technical Challenges for Multi-Robot Search and
Rescue

This section provides an overview of some of the most critical
technical challenges preventing multi-agent systems from being
deployed for search and rescue. The challenge areas were cho-
sen based on published surveys and interviewswith practitioners
[3••, 10] as well as conclusions from prior reviews on the topic
[11••, 12, 13]. A significant portion of each challenge area re-
lates to the notion of system scalability, defined as the implica-
tion on functionality as agent count increases. Three metrics can
be used to broadly characterize the functionality of a multi-robot
system: reliability, autonomy, and mobility. Figure 3 illustrates
the relative importance of each of the identified challenge areas
to these performance metrics, as determined qualitatively during
review of the relevant literature. These determinations are made
with a focus on the challenges inherent to MRS, such as scal-
ability. For example, while improving the operator interface
(i.e., an advancement in human–robot interaction) may improve
mobility of a single platform during direct teleoperation, MRS-
specific challenges in human–robot interaction (HRI), such as
one-to-many control, are more directly relevant to autonomy
and reliability. A graphical overview of this section and the
contained subtopics is shown in Fig. 4.

Fig. 1 Heterogeneous multi-robot systems designed for search and
rescue. From left: The Explorer DARPA SubT challenge robots, CTU-
CRAS-NORLAB DARPA SubT challenge robots [122], and Hector

RoboCup Rescue League robots. (Reproduced with permission from
www.subt-explorer.com, www.teamhector.de, and https://robotics.fel.
cvut.cz/cras/)

Fig. 2 Total number of publications per topic based on a keyword search
of indexed metadata. Gathered using Dimensions software [123]

190 Curr Robot Rep (2021) 2:189–200

http://www.subt-explorer.com
http://www.teamhector.de
https://robotics.fel.cvut.cz/cras/
https://robotics.fel.cvut.cz/cras/


Perception and Planning

The abilities to reconstruct the world around them from in-
coming sensory data, navigate safely in the face of obstacles,
and decide on the correct course and timing of actions are all
vital aspects of robot operation. Multi-robot systems add on
further challenges by demanding not only individual agent
autonomy but also system-level requirements, like effective
sharing of information and the ability to decide which

constituent robots of the group should be assigned to perform
individual tasks. The search and rescue context demands low
failure-rate performance in some of the most challenging con-
ditions possible for today’s robots.

Often, one of the first tasks in disaster response is con-
structing an operation map for other first responders, making
simultaneous localization and mapping (SLAM) a critical fea-
ture for search and rescue robots [3••]. Surveys of recent ad-
vances in SLAM [14•] and in multi-robot SLAM (or “coop-
erative mapping”) [15] are available. Search and rescue is a
particularly interesting application space for developing
SLAM techniques because of inherent challenges with inter-
robot communication and the unstructured, dynamic nature of
the environments. Fully distributed multi-robot SLAM tech-
niques, which do not assume full agent connectivity, may be a
partial solution to the communication challenge [16].
Semantic segmentation-based SLAM shows promise for un-
structured and ambiguous environments like those encoun-
tered in SAR [17]. Realistic hardware demonstrations for
multi-robot search and rescue SLAM are bottlenecked by
practical challenges like platform cost and the availability of
large, safe testing environments. Although logistically chal-
lenging, development of a publicly accessible robot collec-
tion, for example, in the style of the Georgia Tech
Robotarium [18], is a promising solution to the current lack
of truly compelling (from the perspective of search and res-
cue) demonstrations.

Challenges associated with motion planning for autono-
mous robot navigation are highly specific to the usage envi-
ronments and performance demands. Recent reviews of mo-
tion planning for mobile robots in general [19] and specifical-
ly in dynamic environments [20, 21] are available. In general,
motion planning is relatively mature in highly structured en-
vironments like warehouses, but still a great challenge in
many of the situations common to disaster areas like dynamic
obstacles, complex geometries, and fluctuating or adverse en-
vironmental conditions like smoke. Perception-driven

Fig. 3 Qualitative relevance of each of the discussed technical challenge
areas to the multi-robot system (MRS) functionality metrics of autonomy,
mobility, and reliability. For example, advances in Human–Robot
Interaction (HRI) will be major contributors to improved autonomy and
reliability of MRS for search and rescue. Note that this figure is intended
to pair the relevance of new research advances to new improvements in
functionality, not as a retrospective assessment

Fig. 4 A graphical overview of
the technical challenge areas
related to the use of multi-robot
systems for search and rescue
applications, which corresponds
to the subtopics discussed in more
detail within the text
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autonomy which can function in unstructured and dynamic
environments is developing rapidly, with recent results dem-
onstrating even aggressive maneuvering of a UAV using on-
board computation [22, 23]. Multi-robot systems have the
additional challenge of ensuring no robot-to-robot collisions
occur during deployment. Formation control and collision-
free trajectory planning is a topic with significant recent prog-
ress, as surveyed in [24]. Recent work on decentralized for-
mation control using only visual information and on-board
processing is promising, with hardware demonstrations of
up to 12 quadrotors in low light conditions [25].

Efficient task allocation is a major challenge to ensuring the
scalability of multi-robot systems. A recent general survey of
different approaches to task allocation in multi-robot systems
is given in [26•]. This challenge is compounded by factors
such as the communication range limits, imperfect global state
estimation, and control delay present in many search and res-
cue applications. The constraint of maintaining communica-
tion range during task performance is captured by the notion
of cross-schedule dependencies, as described in recent com-
prehensive task-allocation taxonomies [27]. Approaches
which explicitly take into account uncertainty in state estima-
tion are likely to be important [28]. In addition, many of the
robotic deployments for past disaster recovery efforts have
been heterogeneous in nature, involving some combination
of ground, air, and marine platforms. Task allocation for het-
erogeneous multi-robot systems that takes differing platform
capabilities into account will be important as more autono-
mous operation is incorporated [29].

Communication

One of the major challenges associated with autonomous and
semi-autonomous multi-agent systems is routing state and
control data to and from the members. A related architectural
decision for multi-robot control is between centralized, where
a base station receives state information and then computes
high level trajectories for individual agents, and decentralized,
where robots make decisions internally using their own cur-
rent view of the world and the other robots inside it. Both
centralized and decentralized methods rely on communication
of state information. Based on a formalism established in [30],
methods of communication can be described as explicit, where
messages are sent in direct peer-to-peer routed links, or
implicit, where messages are mediated by modifications to
or changes in the shared environment.

A major difficulty in using explicit communication
methods for multi-robot systems is the tradeoff between scal-
ability and bandwidth; agents must share the total network
capacity, reducing each one’s share as more are active [31].
Agents must, typically, time-multiplex their transmissions
within some predefined slotting system in order to maintain
reliability [32]. In addition, during disaster-related operations,

the common issues with reliable wireless communication in
areas lacking preexisting infrastructure such as multipath fad-
ing are exacerbated by domain-specific challenges, like inter-
ference from collapsed metal-rich structures, malfunctioning
and/or damaged equipment, and large numbers of
decentralized response efforts all relying on the same frequen-
cy bands. Path planning algorithms which respond to changes
in communication performance in real time are a promising
solution [33].

Ad hoc wireless mesh networking stacks are emerging that
enable relatively robust communication to a base node using
dynamically reconfigurable (e.g., as the robots move) topolo-
gies [34, 35]. Such implementations have been demonstrated
in long-term real-world deployments with large numbers of
static nodes, for example, in the ARHO project with almost
1000 networked sensors [36]. Taking advantage of frequency
diversity in the network through a concept known as channel-
hopping, where radio devices dynamically change which por-
tion of the frequency spectrum they are communicating on
based on network conditions, has been shown to improve
reliability to levels that satisfy safety-critical applications
[37]. There is still an inherent tradeoff between maximum
individual agent data throughput and total agent count that
sets constraints on the number of robots in the system given
some minimum amount of information, or maximum latency,
required for operation. There are few examples of actual de-
ployments of mesh network enabled robots (one example is
with a group of 10 UAVs [38]). Integrating open-source ef-
forts to release full-stack Internet-of-Things packages based
on this technology [39] with the robotic platforms is a prom-
ising path forward.

New methods to supplement radio-frequency communica-
tion should also be explored in order to both improve reliability
through redundancy and complement existing functionality.
Line of sight communication for fleets of autonomous UAVs
has been demonstrated in wide ranging light conditions [40],
but guarantees on sightlines are difficult to make due to the
large nature of typical search and rescue environments and
the presence of smoke and dust, which can reduce signal from
visual, IR, and laser systems. Ultrasonic and acoustic [41, 42]
communication and sensing for teams of robots has been dem-
onstrated, but reliability has not been assessed in a realistic
search and rescue environment and there exists no meta-study
of acoustic conditions in disaster areas. In the case of autono-
mous underwater vehicles specifically, acoustic networking has
been validated as amethod to cooperatively navigate in the field
without the need for resurfacing [43]. Sound source localization
for search and rescue (e.g., for victim finding) using airborne
microphone arrays is an area of current research [44, 45]; using
the same acoustic sensing systems for robot colocalization
could be an interesting area for future work.

Moving toward more decentralized control [46,47] is one
way to enable multi-agent systems to operate cooperatively
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despite lacking high bandwidth communication links to base
stations and to obviate some of the challenges associated with
scaling to high agent counts. Machine learning–based ap-
proaches to derive communication requirements for robot
teams is one way to reduce required inter-robot network band-
width [48]. Implicit communication strategies can ensure in-
formation is still transferred between decentralized robots
without the inherent scalability challenges of explicit
methods. In a concept known as stigmergy, inspired by the
communication strategies employed by social insects [49],
robots modify their surrounding environment either through
deployment of supplementary networking devices (e.g., RFID
tags [50, 51] or 802.15.4 RF motes [35]) or by mechanical
means (e.g., chemical spraying [52]). While current
implementations are a far cry from the high levels of function-
ality exhibited by insects (e.g., using pheromones [53]) in
terms of carrying capacity, signal diversity, and range, ad-
vances in millimeter and sub-millimeter wireless motes [54]
could lead to more capability in the future. Rather than mod-
ifying the environment directly, other work focuses on using
the implicit information communicated by the actions being
undertaken by other robots, similar to the concept of human
body language, in order to coordinate tasks without direct
communication [55].

Human–Robot Interaction (HRI)

Challenges related to human–robot interaction are perceived
by a majority of both practitioners and researchers as a major
barrier to adoption of robots for search and rescue operations
[10]. There are well-documented challenges related to
teleoperation of ground, aerial, and marine robots in general
[56] and in search and rescue environments specifically [57].
As a result, operators must be highly trained, and even then,
failure due to operator error has occurred in both routine and
critical disaster settings [58]. Best practices for future interface
design of search and rescue and other field robots, as distilled
from research and practitioner interviews, are listed in [59•].
Interaction design for multi-robot systems is even more chal-
lenging due to cognitive burden increasing with robot count,
robots of disparate abilities being dispersed through disparate
environments, and the high cost of failure making fully auton-
omous operation dangerous.

Control complexity in a multi-robot system can be defined
in similar ways to computational complexity. For example, if
a group of robots are operating completely independently,
then the operator cognitive load is order O(n) and total effort
scales linearly with robot count. Given the challenges associ-
ated with 1:1 and even 2:1 teleoperation of robots in search
and rescue scenarios, simultaneously increasing agent count,
decreasing effort burden, and maintaining (or beginning to
make) safety guarantees is both tremendously difficult and
tremendously important. Research in the space of human–

swarm interaction, as surveyed in [60], aims to move toward
O(1) effort for arbitrarily large groups of robots and has seen
recent success, although typically only in simple, simulated
environments and tasks. As multi-robot systems increase in
agent count and swarm hardware platforms increase in capa-
bility these fields may truly converge, but in the meantime,
practices uncovered by the swarm community should not be
discounted by those who work using more “traditional”multi-
agent platforms and numbers.

New schemes for human–robot interaction vary greatly de-
pending on whether they are intended for proximal or remote
use.While the latter is currently themost common in search and
rescue, human–robot proximal teaming is of growing interest.
In the case of proximal interactions, gesture-based cues have
been explored for groups of up to 20 aerial [61] and 20 ground-
based [62] robots, although not validated in the field. Recent
work uses human-centered design practices to assess how these
types of interaction modalities scale to larger agent count sys-
tems [63]. Remote interaction (i.e., outside audible or visual
range) is largely mediated through electronic devices. While
this topic has been explored for some time, with seminal work
appearing as early as 2005 [64], documented challenges with
effective control as agent count increases still exist [60]. To
combat cognitive load, there has been a trend toward interfaces
that offer the operator some form of future state prediction [65].
Interfaces that allow high-level task specification and therefore
abstract out the specifics of planning may help simplify task
allocation for robots of disparate abilities.

In the context of multi-robot systems, advances in HRI that
will allow for more effective one-to-many operation are insep-
arable from advances in autonomy. Realistically, however, the
high cost of failure (e.g., in victim identification) means that
human-in-the-loop control is likely for the foreseeable future of
disaster robotics. A research direction that explicitly connects
the two is that of sliding, shared, or adjustable autonomy [66],
where agents can transition on a scale from fully autonomous to
teleoperated based on situational context. Such a strategy could
allow human operators to aid in difficult navigation or identifi-
cation tasks for multiple robots without incurring the full cog-
nitive load burden of direct teleoperation. Leveraging learned
models of human preferences (i.e., when in a given scenario
they would most likely take over direct teleoperation of an
agent) [67, 68] and learned models of when robots are likely
to require intervention (e.g., by assessing incoming sensory data
for statistical anomalies [69] or by incorporating human control
expected utility into a learned policy [70]) in order to automate
the sliding autonomy control handoff could further reduce op-
erator training requirements and attention burden.

Balancing Cost and Functionality

There is an inherent tradeoff between price, functionality, and
agent count for a multi-robot system. Given a static budget,
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the core effort is to balance the gains from parallelization (i.e.,
through the use of more robots) with the loss in individual
platform functionality that eventually means they become un-
usable. The search and rescue domain places additional lower
bounds on requisite mobility and independence for a platform.

There are fundamental mobility issues associated with
ground robots that are affordable enough to be deployed in
large numbers. For example, despite the relative maturity of
robots using treads and wheels, they are still infrequently de-
ployed in rescue environments due to challenges in guarantee-
ing that they will be able to navigate a priori unknown terrain
with even state of the art locomotive capabilities [11••]. In part
motivated by the need to overcome mobility challenges in
smaller low-cost ground platforms, there has been a relatively
recent trend toward development of modular robots [71, 72].
There are examples of modular robots built specifically for
search and rescue [73] as well as with obstacle navigation in
search and rescue as at least partial motivation [74]. Recent
efforts towards perception-driven autonomy [75] for modular
robot systems are encouraging, albeit in structured laboratory
environments. Less dramatic platform changes, like adding
alternate locomotion strategies (e.g., wheels for legged robots
[76]) or driving down the cost of legged robots [77], may be
important nearer-term solutions.

Improving usability of ground-based platforms is doubly
important because for many applications there is a need to
extend robotic mission lifetime. With current battery technol-
ogy, decimeter-scale autonomy-capable UAVs have maxi-
mum flight durations of about 30 min in ideal cases. In the
case of search and rescue, the average mission time for
teleoperated UAVs is only about 10 min [5]. Smaller, less
expensive drones which can be deployed in higher numbers
have even shorter flight times. Further complicating this issue,
multi-robot systems must allocate additional energy to inter-
robot communication and formation control during routing,
and typically have some overlap time during deployment that
makes at least part of their operation time redundant instead of
additive. In a disaster environment there may be no existing
infrastructure to use for power scavenging, no safe space to
wait for humans to reach the robot and recharge it, and no
guarantee that a previously traversed path will remain static
and therefore take the same amount of time on the return trip.
Bimodal locomotion platforms [78, 79] which can switch be-
tween energy-efficient ground locomotion and flight when
necessary will likely be important solutions. Explicitly taking
into account energetic constraints during motion planning is a
way to improve performance with no hardware modification
[80]. Due to the heterogeneous nature of most projected
search and rescue robot deployments, strategies for mobile
ground-robot based charging of flying robot team members
may be important [81].

Disaster areas may be filled with rubble and debris, making
environmental manipulation useful for both mapping and

victim identification. While traditional platforms have diffi-
culty with autonomous manipulation tasks, multi-robot sys-
tems have the ability to work together for something known as
cooperative manipulation or “cooperative transport.”
Demonstrations have typically relied on centralized ap-
proaches, based on high bandwidth connectivity, that are un-
suitable for SAR. Recent work on fully decentralized methods
for ground robot cooperative manipulation [82] is promising.
Multi-robot motion planning algorithms which take into ac-
count laden payloads [83] will be necessary. Although per-
haps the coordinated manipulation of rigid objects is more
relevant to SAR, progress toward the more difficult case of
deformable objects is surveyed in [84].

Translating Results from Simulation

There are known challenges with translation of results from
simulation to hardware in robotics. Many of these challenges,
for example, the difficulty in modeling the effect of adverse
environmental conditions on sensor input, are especially sig-
nificant in the context of search and rescue [85]. In the early
2000s, there was an effort within the RoboCup Rescue com-
munity to move toward large-scale physics-based simulations
using the USARSim platform [86], which significantly im-
proved simulation fidelity and in doing so helped guide re-
search toward solving SAR-specific challenges. There has
recently been a shift in RoboCup, however, toward using
ROS and Gazebo [87] for simulation. Motivated by chal-
lenges in simulation-to-reality transfer in systems developed
using tools like Gazebo, there is recent research building
photorealistic simulation environments for robotics like
Microsoft AirSim [88] and Facebook AI Habitat [89]. As
those tools mature, search and rescue robotics researchers,
and RoboCup specifically, should transition to them. The
DARPA SubT Virtual simulation environment is a good ex-
ample of a current program trying to bridge this gap [90].
Even the most realistic simulation environment cannot ac-
count for all possible circumstances in a highly dynamic space
like search and rescue; recent work on uncertainty aware pre-
dictions for deep learning may make findings more translat-
able to situations outside the training data set [91]. Known
challenges in translating HRI findings from simulation to real
hardware can benefit from recent expert guidelines [92].

Toward Equitable Access to Life-Saving Robotic
Technology

There already exists a documented discrepancy in access to
life-saving technologies and in efficacy of response efforts as
a result of regional and socioeconomic inequalities, both glob-
ally and more narrowly (e.g., within individual cities of the
USA) [93–96]. In the near term, deployment of individual
robotic and multi-robot systems for search and rescue is likely
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to make these discrepancies even more pronounced due to the
high capital and training investments required. Efforts to re-
duce overall equipment cost and the cost associated with op-
erator training are therefore important not only as feats of
engineering but as ones that serve a more equitable future.

Multi-agent systems will rely on individual agent autono-
my and decision-making for effective use. The current trend is
toward the use of machine learning (ML) algorithms for the
majority of tasks related to vision and detection [97], and
increasingly learning algorithms feed in to the ability of robots
to manipulate and reason about task feasibility [98]. Despite
rapid progress in these domains there exists a documented
issue with algorithmic fairness in the ML community
[99–101]. In the context of search and rescue, issues with
non-White facial recognition inaccuracy could prevent vic-
tims from being identified by robots, and reward functions
hand-tuned by researchers with implicit biases could lead ro-
bots to target their search patterns in ways that neglect histor-
ically disenfranchised communities. Perhaps search and res-
cue is a valuable framing of these topics, making it harder for
researchers to think about failures as inconveniences and in-
stead as, potentially, the difference between life and death.

There are also questions related to privacy and trust regard-
ing the data collected during search and rescue operations,
whether it is by government actors or by private contractors.

These questions are made more difficult by the fact that tradi-
tional boundaries between public and private spaces can
weaken during times of crisis either from a sense of urgency
or from physical destruction of barriers [102, 103]. Debate
surrounding proper censoring and anonymization of autono-
mously collected video and demographic data should be re-
examined in this context, and researchers should carefully
consider what information is strictly necessary for improving
safety.

Aligning Research Efforts with Public Interest

Challenges, competitions, and other multi-group initiatives
have historically been important for driving robotics research
forward. Since the early 2000s, there have been a number of
these programs focused specifically or tangentially on search
and rescue robotics, including ARGOS [104], MBZIRC
[105], ERL [106], ELROB [107], DARPA SubT [90],
ARCHE [108], the DARPA Robotics Challenge [109],
euRathlon [110], TRADR [111], ICARUS [112], SHERPA
[113], DARIUS [114], Odyssey [115], and MAGIC [116].
The longest running and most directly relevant competition
related to multi-agent search and rescue is the RoboCup
Rescue League (RRL) [117••], the successor to the AAAI
Robot Rescue competition [118]. A recent survey of rescue

Table 1 Relevant programs and competitions for multi-robot system (MRS) search and rescue (SAR)

Program/competitionProgram/
competition

Years active Funding MRS SAR Field test Organization region

ERL Emergency [106] 2018–present √ √ Europe

NSF NRI and NRI2.0 [124] 2013–present Recurring † † USA

ARCHE [108] 2018–present √ √ Switzerland

DARPA SubT (Systems) [90] 2018–present Prize* • √ √ USA

DARPA SubT (Virtual) [90] 2018–present Prize* • √ USA

MBZIRC [105] 2017–present Prize √ √ UAE

ELROB [106] 2008–present √ Europe

RoboCup Rescue (RRL) [117••] 2010–present √ √ √ Europe

Rescue Simulation (RSL) [117••] 2010–present √ √ Europe

Odyssey [115] 2018–2019 Prize √ √ Russia

TRADR [111] 2014–2018 Recurring √ √ √ Europe

ICARUS [112] 2012–2017 Recurring √ √ Europe

ARGOS [104] 2013–2017 Recurring √ Europe

SHERPA [113] 2013–2017 Recurring √ √ √ Europe

DARIUS [114] 2012–2015 Recurring √ √ √ Europe

DARPA Robotics Challenge [109] 2013–2015 Prize √ √ USA

euRathlon [110] 2013–2015 Recurring √ √ √ Europe

MAGIC [116] 2009–2010 Prize √ √ USA, Australia

AAAI Robot Rescue [118] 2000–2007 • √ √ USA

*Recurring funding also offered to a subset of teams. †Although not explicitly focused onMRS or SAR, at least five individual research awards made by
this program (out of over 200) have been. • Not explicit focus, but multiple teams have some degree of collaboration between robots

195Curr Robot Rep (2021) 2:189–200



competitions can be found in [119•]. Table 1, a collection of
recent robotics challenges and programs and their relevance to
multi-robot search and rescue, illustrates a clear problem:
there is not enough funding to push researchers toward this
difficult topic in a focused way, especially within the USA
(i.e., the majority of listed multi-robot search and rescue pro-
grams, and the majority of RRL teams, are from the European
Union). While recent efforts like the DARPA SubT challenge
are promising, it is focused solely on underground terrain and
does not explicitly call for multi-robot systems. Given the high
cost of both developing or acquiring multiple experimental
hardware platforms and performing realistic field testing,
more sources of ongoing, multi-year funding are necessary.
Prize-only funding models will both unfairly handicap new
and upcoming groups and likely reduce participation rates
altogether.

Translating research from the laboratory (or competition)
to the real world is difficult in any case. Search and rescue
robots face additional difficulty with their uncertain route to-
ward commercialization and the requirement of operating in
some of the most technically challenging conditions possible,
making research on this topic relatively high risk. Further, the
gap in reliability between commercially available robots and a
typical research-grade system means that penetration of any
novel platformwill be slow. Truly assessing reliability (e.g., to
the point of failure) requires a significant investment of time
and money. Unfortunately, there is fundamentally a misalign-
ment of the goal structures between academics and practi-
tioners, where high value is placed on novelty (perhaps exac-
erbated by the annual conference deadline structure) for the
former while system reliability and robustness are the primary
concerns for actual deployment [11••]. This is a structural
challenge that will take concerted effort from funding agen-
cies and publication venues to solve.

Conclusion

As the coordination algorithms, platform functionality, and
interaction methodology improve for multi-robot systems,
they will become increasingly viable for responding to disas-
ters. There is currently encouraging research on every techni-
cal challenge front. Moving forward, proper alignment of
stakeholder values with academic research directions and
funding streams that focus on realistic, equitable technology
integration will ensure that life-saving deployments happen as
quickly as possible.

While this paper has focused on disaster early-response
activities, true disaster response plans include preparatory,
response, and recovery phases [3]. In the future, increasing
levels of autonomy will be leveraged to expand the use of
robotic assistance in the preparatory and recovery phases of
disaster response, with specific use cases ranging from

persistent infrastructure monitoring [120] to reconstruction
of damaged property [121].
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